Data Analytics

Data Analytics  Syllabus

PythonSoft LLP

www.pythonsoft.org

1. Introduction to python

  • History of Python
  • Why to learn python
  • How is Python Different from other programming languages
  • Installing Python and path setting
  • How to run python programs

2. Basics of Python

3. Operators

  • Arithmetic operator
  • Relational Operator
  • Assignment Operator
  • Logical operator
  • Bitwise operator
  • Membership Operator
  • Identity Operator

4. Control Flow

  • If statement
  • If - else
  • If – elif -else
  • Nested if – else
  • While loop
  • for – in loop
  • Nested loop
  • Loop with else
  • Pass statement
  • Break and continue

5. Functions

  • Function Basics
  • Defining function
  • Function call
  • Return statement
  • Function parameters
  • Call by value or call by reference
  • Local and global variable
  • Recursion
  • Anonymous (lambda) function

6. Modules

  • Defining module
  • How to create module
  • Importing module
  • Dir ()
  • Module search path
  • Reloading a module
  • Sys module
  • Os module
  • Namespace

7. Packages

  • Defining package
  • How to create package
  • Importing package
  • Installing third party packages

8. Numeric Types

  • Numeric type basics
  • Numbers
  • Hexadecimal, Octal and Binary Notation
  • Complex Numbers
  • Type casting
  • Numeric Functions
  • Random number generation

9. String

  • Defining a string
  • Different ways to create string
  • Accessing elements of string
  • Escape sequence
  • Raw string
  • String methods
  • String formatting Expressions

10. List

  • Defining a list
  • Creating list
  • Accessing list elements of list
  • Deleting list
  • List methods
  • Functions used with list
  • List comprehension
  • Implementation of stack and queue using list
  • Use of Zip ()
  • Matrix operations like addition ,multiplication using list
  • Numpy array

 

 

11. Tuple

  • Defining a tuple
  • Creating a tuple
  • Accessing elements of tuple
  • Immutability
  • List vs tuples
  • Tuple Methods
  • Functions used with tuple
  • Advantage of Tuple

12. Dictionary

  • Defining a dictionary
  • Creating a dictionary
  • Accessing elements of dictionary
  • Deleting a dictionary
  • Dictionary methods
  • Dictionary Comprehension

13. Set

  • Defining a set
  • Creating set
  • Set operations
  • Set methods
  • Set comprehension

14. File Handling

  • Defining a file
  • Types of file
  • File operations
  • Opening a File
  • Closing file
  • File modes
  • File attributes
  • Writing to file
  • Reading from file
  • Appending to file
  • File positions
  • Binary file
  • Pickle module

15. Exception Handling

  • Defining an exception?
  • Default exception handler
  • Exception handling techniques
  • Detecting Exception (try)
  • Catching exceptions (catch)
  • Catching multiple exceptions
  • Raising exception (raise)
  • Finally block
  • User defined exceptions

 

16. Object Oriented Programming

  • Oop concepts
  • Defining a class
  • Creating object
  • Method vs function
  • Calling methods
  • Instance attribute vs class attribute
  • Instance method vs class method
  • Private attribute and method
  • Static method
  • Method Overloading
  • Constructor
  • List of objects
  • Inheritance
  • Method overriding
  • Operator overloading
  • Abstract method
  • Abstract class

 

17.Stack ,Queue 

  • Stack  data structure
  • Push ,pop operations on stack
  • Applications of stack
  • Queue Data structure 
  • Insert and delete operations
  • Applications of Queue

18. Multithreading

  • Process based multi-tasking
  • Thread based multi-tasking
  • Creating a Thread without using class
  • Creating thread using class
  • Sleep () method
  • Join () method
  • Getting and setting name of Thread
  • Synchronization
  • Lock concept
  • Is_Alive () method
  • Active_count () method
  • Enumerate () method
  • Current_thread () method
  • Daemon Thread

19. GUI Programming with Tkinter

  • Introduction to tkinter
  • Creating a window
  • Tkinter widgets
    • Label
    • Button
    • Entry
    • Message box
    • List
    • Radio Button
    • Check Button
  • Creating Frame
  • Create  a Random Number Picker
  • Create a calculator

 

20. Database Programming

  • Introduction to SQLite module
  • Connecting to database by using sqlite3
  • Creating table by sqlite3
  • Performing SQL operations
  • Introduction to MySQL
  • Installing MySQL
  • Creating database using MySQL
  • Connecting MySQL database from python
  • Creating table
  • Performing SQL operations

 

Data Analysis  using Python

1 Data analytics ,Data Science,Machine Learning  and AI

  • What is data Science ?
  • Data Analytics vs Data Science
  • What is machine learning?
  • Types of Machine learning
  • Supervised learning
  • Unsupervised learning
  • Reinforcement Learning
  • What is deep learning
  • What is AI
  • Difference between Machine learning, deep learning and AI
  • Project life cycle
  • Applications of Machine learning and deep learning
  • Python packages for data science ,machine learning and deep learning2.

2. Introduction to Data Analytics

  • Over view of data Analytics
  • Application s of data Analytics
  • Data Analytics Life Cycle

3. Numpy Array and its use

  • Introduction to Numpy
  • Different ways for Creating numpy array
  • Array(),Arange(),linspace(),zeros(),ones()
  • Advantage of Numpy array over List
  • Mathematical operation on numpy array
  • Reshaping numpy array
  • Concatenation and splitting operation
  • Trigonometric functions
  • Matrix operations using numpy

 

3. Data collection and manipulation

  • Pandas series
  • Pandas data frame
  • Reading CSV files
  • Parameters of read_csv()
  • Read excel files
  • Handling missing values
  • Data cleaning and pre processing

4. Exploratory Data Analysis (EDA)

Data visualization using matplotlib and seaborn

  • Barplot
  • Scatter plot
  • Pie chart
  • Lineplot
  • Heat map etc

 

5. Data Preprocessing

  • Data transformation
  • Feature scaling
  • Handling missing values  and outliers

6. Predictive Modelling

    • Introduction to machine learning
    • Supervised and unsupervised learning
    • Model evaluation and selection

7. Regression Analysis

    • Linear regression
    • Multiple regression
    • Logistic regression

8.Classification techniques

    • Decision trees
    • Random forests
    • Support vector machines

 

9.clustering

    • K-means clustering
    • Evaluation of clustering algorithms

 

10.Text Analysis

    • Text preprocessing
    • Sentiment analysis
    • Topic modeling

11.case Studies and Project

    • Real-world case studies in data analytics
    • Hands-on projects to apply learned concepts
    • Presentation and discussion of project outcomes

SQL

1.Introduction to SQL

    • Overview of SQL and its importance in data analytics
    • Understanding relational databases and SQL terminology
    • Setting up SQL environment

 

2.Basic SQL Queries

  •        over view of sql and its importanace in analtyics
    • Understanding relational databases and SQL terminology
    • Setting up SQL environment

3.Data Manipulation

    • INSERT, UPDATE, and DELETE statements
    • Modifying data in tables
    • Managing transactions and data integrity

 

4.Join and sub queries

    • Inner, outer, left, and right joins
    • Using subqueries for complex queries
    • Understanding join performance considerations

 

5.Aggreation Functions

    • GROUP BY and HAVING clauses
    • Aggregate functions (SUM, AVG, COUNT, MIN, MAX)
    • Performing calculations on grouped data

6.Data Analysis using SQL

    • Analyzing data distributions and patterns
    • Using SQL for exploratory data analysis
    • Extracting insights from relational databases

7.Data visualization and Reporting

    • Integrating SQL with visualization tools (Power BI)
    • Generating reports using SQL queries
    • Presenting insights from SQL data analysis

8.Real world applications and case studies

    • Applying SQL for specific data analytics tasks
    • Case studies from various industries
    • Hands-on projects to solve data analytics challenges

 

Power BI

1.Introduction to Power BI

    • Overview of Power BI and its capabilities
    • Understanding Power BI Desktop vs. Power BI Service
    • Exploring Power BI interface and components

2.Getting started with power BI desktop

    •  Installing and configuring Power BI Desktop
    • Connecting to data sources (Excel, databases, web sources)
    • Importing data into Power BI Desktop

3.Data preparation and Transformation

    • Understanding data shaping and transformation
    • Cleaning and transforming data using Power Query Editor
    • Merging and appending queries

4.Data Modeling

    • Introduction to data modeling concepts
    • Creating relationships between tables
    • DAX (Data Analysis Expressions) fundamentals

5.Creating Visualizations

    • Overview of Power BI visualization types
    • Building basic visualizations (bar charts, line charts, pie charts, etc.)
    • Enhancing visualizations with formatting and interactions

6.Advanced visualizations

 

Creating hierarchies and matrices

7.Introduction to power BI service

    • Overview of Power BI Service and its features
    • Publishing reports and dashboards to Power BI Service
    • Sharing and collaboration options in Power BI Service

8.Data analysis and insights

    • Analyzing data using Power BI visuals
    • Implementing calculated columns and measures in DAX
    • Creating key performance indicators (KPIs)

9.Dashboard Design and Development

    • Design principles for effective dashboards
    • Building interactive dashboards in Power BI
    • Dashboard navigation and layout optimization

10. case studies and projects

    • Real-world case studies demonstrating Power BI applications
    • Hands-on projects to apply learned concepts
    • Presentation and discussion of project outcomes

 

 

 

Trainer

Prof Ranjan Das

Mrp Price

₹ 30000

Discount In Percentage

17% off

Discounted Fee

₹ 25000

Duration

100 Hr

Book Now